962. Search for Spectral Evidence of Expansion of the Valency Shell of Sulphur in Aromatic Sulphides.

By A. MANGINI and R. PASSERINI.

The possibility of spectral changes through the occurrence of a type of conjugation in which sulphur is the electron acceptor in systems p-X·C₆H₄·SR, where $X = O^-$, OH, NH₂, or NMe₂, has been examined. For this purpose the near-ultraviolet absorption spectra of some 30 aromatic sulphides or (for comparison) ethers have been traced, often in more than one solvent, and, in some cases in which acid or basic groups were present, at more than one pH. It is concluded that none of the observed spectral effects can be assigned with certainty to conjugation of the type considered. These results, together with parallel work on the dipole moments of aromatic sulphides, indicate that this form of conjugation, if operating, is not important in these systems.

WE have for some time been studying the spectral evidence of sulphur conjugation in aromatic sulphides. There are two basic types of possible conjugation. The best understood (I) involves inclusion of sulphur 3p electrons in an aryl π shell: evidence concerning it comes from the study of chemical equilibium,¹ dipole moments,² and spectra.³ The other type (II) depends on incorporation of aryl π electrons into 3d sulphur orbitals, and we began our spectral study of this possible effect by considering its expected consequence that a combination of processes (I) and (II) in a diaryl sulphide should, as shown in (III), lead to conjugation between one aromatic ring and the other. The main

$$\begin{array}{cccc} R-\underbrace{S}{} & Ar' & Ar \underbrace{S}{} & R & Ar \underbrace{S}{} & Ar' \\ (I) & (II) & (III) \end{array}$$

result of this study was to show that process (III) is spectrally unimportant in structures such as (IV), which should provide for it a maximum of opportunity: for a variety of substituents, R, with and without unshared electrons, in the *para*-position in (V), and for purposes of control, in the *meta*-position, and also in the homologous structure (VI),

¹ Baker, Barrett, and Tweed, J., 1952, 2831.

² Chierici, Lumbroso, and Passerini, Bull. Soc. chim., 1955, 686.

³ Mangini and Passerini, J., 1952, 1168; Leandri et al., Gazzetta, 1954, 84, 3, 73; Mangini et al. ibid., p. 47.

did not affect the long-wave band assigned to the chromophore $S C_6 H_4 \cdot NO_2$, except for small modifications attributable to the inductive effect :

$$\begin{array}{ccc} p-\mathsf{Me}_2\mathsf{N}\cdot\mathsf{C}_6\mathsf{H}_4\cdot\mathsf{S}\cdot\mathsf{C}_6\mathsf{H}_4\cdot\mathsf{NO}_2\text{-}p & \mathsf{R}\cdot\mathsf{C}_6\mathsf{H}_4\cdot\mathsf{S}\cdot\mathsf{C}_6\mathsf{H}_4\cdot\mathsf{NO}_2\text{-}p & \mathsf{R}\cdot\mathsf{C}_6\mathsf{H}_4\cdot\mathsf{S}\cdot\mathsf{C}\mathsf{H}_2\cdot\mathsf{C}_6\mathsf{H}_4\cdot\mathsf{NO}_2\text{-}p \\ (IV) & (V) & (VI) \end{array}$$

Although this was clearly a negative result as regards through-conjugation of the form (III), one could not accept it as excluding the component process (II) in general, because steric twisting in diaryl sulphides might have broken an otherwise effective conjugation. We therefore sought spectral evidence of the octet-enlarging aryl-sulphur conjugation (II) in a more direct way, and, in part, in simpler systems.

The main numerical results (wavelengths and extinction coefficients of band maxima) are in Tables 1-3, and a few of the more significant spectra are illustrated in Figs. 1-3. The following is a summary of the main conclusions.

Starting with methyl phenyl sulphide, benzyl phenyl sulphide, or diphenyl sulphide, a bathochromic shift of a few m μ and intensification of the band near 250 m μ is the general result of introducing the substituents O⁻ or NH₂ into the para-position of the S-phenyl The red shifts produced by the dimethylamino-group are considerably larger group. (about 23 m μ) than by the other groups, and therefore the spectral effect of this substituent in other positions, and in other parent compounds, has been studied with some care. It may be noted first that the red shift largely disappears when the dimethylamino-group is introduced into the meta-position in methyl phenyl sulphide or diphenyl sulphide, where the formal conjugation between nitrogen and sulphur is removed, and also when the dimethylamino-group is introduced into the *para*-position in methyl phenyl ether and diphenyl ether, where octet expansion is impossible.

These results alone might have suggested that a spectral effect of the conjugative process (II) was under observation in the p-dimethylaminophenyl sulphides : but, because of the somewhat small magnitude of the effect, and our inability always to interpret small differences in the spectra of such complex molecules, more extensive control experiments seemed necessary. A series of such controls is included in the record. Two illustrations of their general effect may first be given. These are that a dimethylamino-group, if introduced into the *para*-position of dimethylaniline, or into the *para*-position of the benzyl group of benzyl phenyl sulphide, induces red-shifts of at least half as much as those found in p-dimethylaminophenyl sulphides.

In more detail, the following results show how the long-wave band of dimethylaniline, λ_{max} 250 mµ, log ε 4·15, is affected by a series of sulphur-containing *para*-substituents. The figures represent the bathochromic shift $\Delta \lambda$ in m μ , and (in parentheses) the intensity $\log \varepsilon$ of the shifted band :

S∙CH₃	S∙C ₆ H₅	S∙C₅H₄∙NO₂-⊅	S·CH₂·C₅H₄·NO₂-p		
+22 (4·31)	+ 24 (4 ·39)	+25 (4·41)	+22 (4·48)		
СН	₂·S·CH₃	CH₂·S·C ₆ H₅	CH₃·S·C₅H₄·NO₃-⊅ +16 (4·24)		
+1	2 (4·27)	+14 (4·39)			

We see that the excess of the shift when nitrogen-sulphur conjugation of type (II) is formally permitted, over the shift obtaining when it is excluded, is only of the order of magnitude of the latter shift and is therefore not large enough to allow us to conclude that aryl-sulphur conjugation involving octet expansion produces the spectral consequences which have been observed.

Moreover, the original bands at 255 m μ in p-aminodiphenyl sulphide and 274 m μ in p-dimethylaminodiphenyl sulphide are only very little enhanced by para-substitution with NX₂, OR, and O^- (see Table 3).

These results confirm our former provisional conclusion.⁴ Sanesi and Leandri recently found no evidence of conjugation of type II in their dipole-moment measurements on aromatic sulphides.⁵ It would appear therefore that this form of sulphur conjugation is unimportant in aryl sulphides.

⁴ Mangini and Passerini, loc. cit., ref. 3; J. Phys. Radium, 1954, 15, 625; Gazzetta, 1954, 84, 606; Experientia, 1956, 12, 49. ⁶ Sanesi and Leandri, Boll. Sci. Fac. chim. ind. (Bologna), 1955, 13, 56; Ann. Chim. appl., 1955,

45, 1106.

	(0	(mμ) log ε (232 3.76) 251 4.09 (265 3.70) 277 3.76	$ \begin{array}{cccc} (224 & 3.79) \\ 240 & 4.07 & (e) \\ 255 & 4.27 \\ 275 & 3.96 & (d) \\ \end{array} $	(228 3-92) 260 4-29	228 3.78 274 $4.39(f)$	$ \begin{array}{cccc} (228 & 4\cdot03) \\ 254 & 4\cdot31 \\ 285 & 3\cdot68 \\ 3\cdot68 & e \end{pmatrix} \\ 3\cdot53 & 3\cdot53 \end{array} $	eceded by very ner. Chem. Soc., 1 to by Mangini 2, 1168; Fehnel 232: spectrum FOG. chim. ind. FOG. chim. ind. ind. (envelope in 0-1N-NaOH; isults of Tundo ind. (Bologna), ind. (Bologna),
LE 1. Amino- and hydroxy-substituted sulphides.	Diphenyl sulphides	No	(6) M. p. 96°	(8) M. p. 50-1°	(10) M. p. 66—67°	(12) B. p. 180°/5 mm.	e) Slight shoulder. (f) Max. pr bid.; Fehnel and Carmack, J. 44 id purified by method (c) referred i ethanol, idem, ibid., and J., 1955 i, 5250. (4) Annalen, 1912, 393, ne, Tundo and Ruzzier, Boll. sci. trum registered in m-hexane; in 1 Ber., 1914, 47, 1100; spectrum trum in 0-118-NaOH; spectrum trum in 1622. 1168 and loc. scit. in (6).
	Benzyl phenyl sulphides *	(mμ) log ε 242 3·62) 255 3·83	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	not ex.	not ex. (not ex. ((d) Inflexion. (e (d) Inflexion. (e in EtOH, idem, ib i. (3) Prepared an in et al., loc. cit.; in hem. Soc., 1990, 72 2889; in cyclohexa. 1912, 811, 30; spect 1122ier, loc. cit. (7) 9, 511, 1530; spect ad. al., 10) Sanesi a
		M. p. 42-43° (M. p. 74—75° (;				by ill-defined max. azzetta, 1954, 84 , 3; nd Carmack, <i>los. c</i> 3 <i>i n</i> -hexane : Mangi Matsen, <i>J. Amer. C</i> Matsen, <i>J. Amer. Char.</i> (6) <i>Re. Tyau. chim.</i> , ane, Tundo and Ri "ane, Tundo and Ri "ane, Tundo and Ri "ane and Ri "ane Ruzzier, <i>loc.</i> " <i>n</i> FrOP.
		1 log € No. 3.05) (2) 3.99 3.00 (<i>a</i>)	$\begin{array}{c} 3.54 \\ 3.90 (b) \\ 3.97 \\ 4.03 \\ 3.14 (c) \end{array}$	3.64) 4.17 3.35 (d)	3.63) 3.93 (e) 4.31 3.39 (d)	$\begin{array}{c} 4.28 \ (b) \\ 4.25 \ (d) \\ 3.63 \ (a) \\ 2.99 \\ 3.45 \end{array}$	Inflexion followed I : Mangini et al., G in EtOH, Fehnel a rmack, loc. cit.; in mack, J. Amer. Ch 1923, 45, 2399. (G 1923, 45, 2399. (ef. 4 1923, 45, 2399. (f) 1923, 417; in cyclohex ef. 4. (8) J. Amu run resistered in
TAB	ŝ	$\lambda \ (m\mu) \ (225 \ 254 \ 280 $	$\begin{array}{c} (220\ 242\ 246\ 264\ 296\ 296\ 296\ 296\ 296\ 296\ 296\ 200\ 200\ 200\ 200\ 200\ 200\ 200\ 20$	$\binom{224}{259}$	$\binom{230}{250}$ 305	$238 \\ 248 \\ 270 \\ (281 \\ 308$	 x. (c) I bad band hexane ectrum i and carr and carr m. Soc. x, 1954, 1 c. cit. r c. cit. r spec spec spec spec spec spec spec spec
	Thioanisole	No. (1) B. p. 82°/16 mm.	(4) B. p. 140°/15 mm.	(7) M. p. 84—85°	(9) B. p. 140°/3 mm.	(11) B. p. 165—163°/16 mm.	tuents in benzyl nucleus. k inflexion. (b) Ill-defined ma. ler at 250 and 263 m. (g) Brc 1887, 20, 2026 : spectrum in n . (2) Bev, 1907, 40, 4194 : spin (1) : spectrum in EtOH, Fehnel k, loc. cit.; Koch, J., 1949, 387 n-hexane; in EtOH, Fehnel 265, 14, 9. (5) J. Amer. Chen e 342-28), Mangin et al., Gazzetta a OEt, Fehnel and Carmack, lo Ne. Cit. (30) Bev. 1965, 45, 1106
		Substituent H	p -NH $_3$	-0-4	p-NMe2	m-NMe2	 * Substi (a) Weal weak should (b) Ber. (a) Weal (b) Ber. (b) Ber. (b) Ber. (c) Ana. (c) Ana.

4956

	[1956]	E	xpansi	on of	the Va	alency Shell	of	Sulphur	r, etc.		4957
	log ε 3.58) 2.86) 3.40	3-81) 4-25 3-08) 3-38	3-88) 4-52 3-53) 3-67	3.82) 4.39 3.65 (a)	3-89) 4-48	mμ region ; antal. (15) (22) <i>Ber.</i> , 5) <i>Boll. sci</i> .	TABLE 3. pp'-Disubstituted diphenyl sulphides.	log e 4·35 4·05 (b)	3.72) 4.09 $(b)4.334.00$ (b)		: spectrum ; spectrum
	$\lambda \ (m\mu) \ (222) \ 247 \ (284) \ (284) \ 316 \ 316$	$\binom{232}{258}$ (289 311	(227 262 (284 301	$\binom{232}{264}$	(232 272	for <300 8 Experime 24, 564. 4454. (21		$\lambda \ (m\mu) \ (< 225) \ (< 263 \ 282 \ 282 \)$	$\binom{225}{272}$ 250 295		0, 52 , 1146 <i>l., loc. cit.</i>
	D. NMe ₂ ·C ₆ H ₄ X(p) b) X = OH (M. p. 77-78°)	8) X = OPh (B. p. 192°/16 mm.)	1) $\mathbf{X} = \mathrm{CH}_{\mathbf{a}}^{2}\mathrm{C}_{\mathbf{a}}^{4}\mathrm{H}_{\mathbf{a}}^{2}\mathrm{NMe}_{\mathbf{a}}(p)$ (M. p. 91°)	4 X = CH ₂ •SPh (M. p. 106-107°)	7) $\mathbf{X} = \mathbf{S} \cdot \mathbf{CH}_{\mathfrak{g}} \cdot \mathbf{C}_{\mathfrak{g}} \mathbf{H}_{\mathfrak{t}} \cdot \mathbf{NO}_{\mathfrak{s}}(p)$ (M. p 102-103°)	27 we report only our results , (20), (23), (24,) (26), (27) Sec 243. (21) $Chem. Zh_{2}$, 1900, Imer. Chem. Sor., 1952, 77, Passerini, J , 1952, 1168.		,¢	NH₁-⊅′ М. р. 130°		l, 47. (29) <i>J. Amer. Chem. Soc.</i> , 193 rum in N-NaOH. (32) Mangini <i>et a</i>
s.	ŽČ	L L	(2) (b)	. (3	[2]	nds 2.5		S·C ₆ H ₄ ·C	·S·C ₆ H ₄ ·)		
laniline	l∩g ε 3.62) 3.20) 3.41	3.60) 3.108 3.103 3.35	3-68) 4-36 3-21) 3-39	3.59 4.27 3.25 3.38	3-99) 4-24	compou , 1714. <i>Mim.</i> , 19 nd Simp H, Mang		I₂·C ₆ H₄•'	ſe₂∙C₅H₄		1954, 8 4 1) Spect
limethy	$\begin{array}{c}\lambda \ (m\mu)\\ (222 \\ 250 \\ (285 \\ 314 \end{array} \end{array}$	$\binom{225}{256}$ (297 323	(234 261 (284 301	(230 262 300 300	(240 266	For the 1949, 71 1949, 71 Ann. Crecht aurecht aurie EtO		40. 11) <i>p</i> -NF	12) <i>p</i> -NN		Gazzetta, 978. (3
TABLE 2. p-Substituted d	$NMe_2 \cdot C_6 H_4 X (p)$ $C = OMe$ $(M. p. 48^{\circ})$	$\chi = NH_3$ (M. p. 41°)	ζ = CH ₂ •OPh (M. p. 119—120°)	ζ = CH ₃ ·SMe (B. p. 123°/5 mm.)	$\begin{array}{l} \zeta = \mathrm{CH}_{\mathrm{s}}\mathrm{S}\mathrm{\cdot}\mathrm{C}_{\mathrm{s}}\mathrm{H}_{\mathrm{s}}\mathrm{\cdot}\mathrm{NO}_{\mathrm{s}}(p) \\ \mathrm{(M. p. 136-137^{\circ})} \end{array}$	t 282 m μ , log $\varepsilon = 3.63$. latt, J. Amer. Chem. Soc., Ber., 1875, 8 , 619 (19) vith that recorded by All 1954, 45 , 1106 : spectrum		μμ) log ε Γ 27 3.85) (3 50 4.25 (a) (3 31 4.32 55 4.02 (a)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35—240 mµ ini et al., J., 1952, 1168; v. Chem. Soc., 1934, 56 , 1
	No. (14) X	(11) K	(20)	(23) ን	(26) ን	flexion a b, 49. ns and F H. (17) neident v himica,		1.9.8.8.8 ~	ខ្លួននួន	និងងង	region 2 H, Mang J. Amer loc. cit.
	log ε 	4.06 2.94) 3.27	3·58) 4·23 3·07) 3·32	3.67) 4.21 3.27) 3.39	3-88) 4-00 (a) 4-15 4-15	by weak in ita, 1956, 12 its of Kleve in N-NaOl ctically coin ctically coin 6; Ann C		. 108°	. 9 <u>4</u> —95°	. 151—152°	(c) Flat um in EtOl cit. (30) ingini et al
	$\lambda \ (m\mu) \ (> 225) \ (> 225) \ (274 \ (274 \ 295) \ (= 295 \ (= $	$(\sim^{230})_{245}^{(\sim230)}_{282}_{309}$	$\binom{227}{259}$ (283 (283 303	$\begin{pmatrix} 228\\ 264\\ (304\\ 327 \end{pmatrix}$	$\binom{236}{252}{275}$	<i>Experient</i> <i>Experient</i> (c) result (c) resul		` М. р	, М. р	М. р	inflexion : spectri <i>zetta</i> , <i>loc</i> tOH, Ma
	No. NMe ₂ $C_{6}H_{4}X(p)$ (13) $X = H$ (B. p. 192-193°)	(16) $X = 0^{-1}$	(19) $X = CH_2 Ph$ (M. p. 31°)	(22) $X = NMe_2^{(M. p. 51^{\circ})}$	(25) $X = S \cdot C_{eH_4} \cdot NO_2(p)$ (M. p. 180—181°)	(a) Inflexion. (b) Min p for the region >300 m μ . see l (13) Spectrum in <i>n</i> -heptan <i>Ber</i> , 1899, 32 , 3681. (16) S 1903, 36 , 2979: the spectrum <i>Fac. chim. ind.</i> (Bologna), 190		No. (28) ⊉-NH₂·C ₆ H₄·S·C ₆ H₄ [.] NH₂-⊅	(29) <i>p</i> -NH ₂ ·C ₆ H ₄ ·S·C ₆ H ₄ ·OMe- <i>p</i>	(30) <i>p</i> -NH ₂ ·C ₆ H ₄ ·S·C ₆ H ₄ ·OH- <i>p</i> ′	 (a) Inflexion. (b) Weak (28) Ber., 1894, 27, 3262 in EtOH, Mangini et al., Gaz registered in n-hexane; in El

EXPERIMENTAL

Spectra were determined with a Hilger Uvispek photoelectric spectrophotometer. The concentrations used were $10^{-5}M$. The compounds were measured in *cyclohexane* (or in *n*-hexane, as indicated in the Tables) in order to reduce the solvent effect. The results are reported in Tables 1—3, where the wavelengths of maxima and minima are given as $m\mu$, and extinction values as $\log \varepsilon$: minima are indicated in parentheses.

References are given in the Tables to the methods used in the preparation of the compounds, and also references to spectra already recorded by other authors and in other solvents. The absorption curves are reproduced in Figs. 1—3.

The following descriptions relate to the preparation of new compounds or of known compounds by modified methods.

m-Dimethylaminodiphenyl sulphide was prepared as follows. m-Aminodiphenyl sulphide 6 (10 g.) was suspended in water (100 c.c.), and sodium hydrogen carbonate (13 g.) and then dimethyl sulphate (16 g.) were added with constant stirring. The mixture was kept at 30° until evolution of carbon dioxide had ceased, and then at 50-60° for 30-60 min. On cooling, an oil separated (together with a small amount of a crystalline product which was neglected) and was extracted with ether. Distillation of the dried ether extract afforded an oil, b. p. 180-181°/5 mm. (Found : N, 6·1. $C_{14}H_{15}NS$ requires N, 6·1%).

m-Dimethylamino(thioanisole) was obtained in better yield and more easily by methylation of *m*-amino(thioanisole) as above than by distillation of the quaternary iodide. The product had b. p. 165—166°/16 mm. *p*-Methoxydimethylaniline, obtained by methylation of *p*-anisidine as indicated above, crystallised from water in plates, m. p. 48° (in agreement with Griess,⁸ who obtained it by distillation of the quaternary iodide). NN-Dimethyl-p-phenoxyaniline was prepared similarly from p-aminodiphenyl ether, as an oil, b. p. 193°/16 mm. (Found : N, 6.7. $C_{14}H_{15}ON$ requires N, 6.6%).

p-Dimethylaminobenzyl phenyl ether. A solution of p-dimethylaminobenzyl alcohol (5 g.) in concentrated hydrochloric acid (25 c.c.) was heated for 2 hr. in a sealed tube ⁹ at 100°, and to the cooled reaction mixture, which contained p-dimethylaminobenzyl chloride, was added aqueous-ethanolic sodium phenoxide (2.5 g, of phenol in 50 c.c. of ethyl alcohol and 60 c.c. ofaqueous 20% NaOH). The mixture was refluxed for 15 min.; after cooling, a white product was separated. Crystallization from ligroin gave the ether as needles, m. p. 119-120° (Found : N, 6.2. C₁₅H₁₇ON requires N, 6.2%).

p-Dimethylaminobenzyl methyl sulphide was prepared as was the preceding ether, except that the p-dimethylaminobenzyl chloride was condensed with sodium thiomethoxide in a sealed tube. Extraction of the solution with ether yielded an oil, which on distillation had b. p. 123°/5 mm. (Found : N, 7.9. C₁₀H₁₅NS requires N, 7.7%). p-Dimethylaminobenzyl phenyl sulphide was prepared similarly from p-dimethylaminobenzyl chloride and sodium thiophenoxide. It separated in plates, m. p. 106–107°, from ethanol (Found : N, 5.9. C₁₅H₁₇NS requires N, 5.75%). p-Dimethylaminobenzyl p-nitrophenyl sulphide, prepared from p-dimethylaminobenzyl chloride and sodium p-nitrothiophenoxide, crystallized from isopropyl alcohol in orangeyellow plates, m. p. 136-137° (Found : N, 97. C₁₅H₁₆O₂N₂S requires N, 97%). p-Dimethylaminophenyl p-nitrobenzyl sulphide was prepared from a solution of dimethylaminothiophenol (10 g.) in aqueous sodium hydroxide (3 g. in 30 c.c.) and an ethanolic solution (150 c.c.) of *p*-nitrobenzyl bromide (15 g.). After the mixture had been refluxed for 15 min. a red crystalline product separated on cooling, and crystallized from ligroin in prisms, m. p. 102-103° (Found : N, 9.72. C₁₅H₁₆O₂N₂S requires N, 9.79%).

This work has benefited from a financial contribution from the Italian "Consiglio Nazionale Ricerche." The authors are indebted to Prof. C. K. Ingold, F.R.S., for helpful discussion.

ISTITUTO CHIMICA INDUSTRIALE,

UNIVERSITÀ DEGLI STUDI, BOLOGNA, ITALY. [Present address (R. P.): ISTITUTO CHIMICA ORGANICA INDUSTRIALE,

[Received, May 9th, 1956.] UNIVERSITÀ STUDI, CATANIA, CORSO ITALIA 21, ITALY.]

- Griess, ibid., 1880, 13, 249.
- ⁹ As described by Barun and Kruber, Ber., 1912, 45, 2992.

Hünig, Chem. Ber., 1952, 85, 1056.

Zincke and Muller, ibid., 1913, 46, 781.