962. Search for Spectral Evidence of Expansion of the Valency Shell of Sulphur in Aromatic Sulphides.

By A. Mangini and R. Passerini.

The possibility of spectral changes through the occurrence of a type of conjugation in which sulphur is the electron acceptor in systems $p-\mathrm{X} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{SR}$, where $\mathrm{X}=\mathrm{O}^{-}, \mathrm{OH}, \mathrm{NH}_{2}$, or NMe_{2}, has been examined. For this purpose the near-ultraviolet absorption spectra of some 30 aromatic sulphides or (for comparison) ethers have been traced, often in more than one solvent, and, in some cases in which acid or basic groups were present, at more than one pH . It is concluded that none of the observed spectral effects can be assigned with certainty to conjugation of the type considered. These results, together with parallel work on the dipole moments of aromatic sulphides, indicate that this form of conjugation, if operating, is not important in these systems.

We have for some time been studying the spectral evidence of sulphur conjugation in aromatic sulphides. There are two basic types of possible conjugation. The best understood (I) involves inclusion of sulphur $3 p$ electrons in an aryl π shell: evidence concerning it comes from the study of chemical equilibium, ${ }^{1}$ dipole moments, ${ }^{2}$ and spectra. ${ }^{3}$ The other type (II) depends on incorporation of aryl π electrons into $3 d$ sulphur orbitals, and we began our spectral study of this possible effect by considering its expected consequence that a combination of processes (I) and (II) in a diaryl sulphide should, as shown in (III), lead to conjugation between one aromatic ring and the other. The main

(I)

(II)

(III)
result of this study was to show that process (III) is spectrally unimportant in structures such as (IV), which should provide for it a maximum of opportunity: for a variety of substituents, R, with and without unshared electrons, in the para-position in (V), and for purposes of control, in the meta-position, and also in the homologous structure (VI),

[^0]did not affect the long-wave band assigned to the chromophore $\mathrm{S} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{NO}_{2}$, except for small modifications attributable to the inductive effect :
$p-\mathrm{Me}_{2} \mathrm{~N} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{~S} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{NO}_{2}-\mathrm{p}$
(IV)
R. $\mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{~S} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{NO}_{2}-\mathrm{p}$
(V)
$\mathrm{R} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{~S} \cdot \mathrm{CH}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{NO}_{2}-\mathrm{p}$
(VI)

Although this was clearly a negative result as regards through-conjugation of the form (III), one could not accept it as excluding the component process (II) in general, because steric twisting in diaryl sulphides might have broken an otherwise effective conjugation. We therefore sought spectral evidence of the octet-enlarging aryl-sulphur conjugation (II) in a more direct way, and, in part, in simpler systems.

The main numerical results (wavelengths and extinction coefficients of band maxima) are in Tables 1-3, and a few of the more significant spectra are illustrated in Figs. 1-3. The following is a summary of the main conclusions.

Starting with methyl phenyl sulphide, benzyl phenyl sulphide, or diphenyl sulphide, a bathochromic shift of a few $\mathrm{m} \mu$ and intensification of the band near $250 \mathrm{~m} \mu$ is the general result of introducing the substituents O^{-}or NH_{2} into the para-position of the S-phenyl group. The red shifts produced by the dimethylamino-group are considerably larger (about $23 \mathrm{~m} \mu$) than by the other groups, and therefore the spectral effect of this substituent in other positions, and in other parent compounds, has been studied with some care. It may be noted first that the red shift largely disappears when the dimethylamino-group is introduced into the meta-position in methyl phenyl sulphide or diphenyl sulphide, where the formal conjugation between nitrogen and sulphur is removed, and also when the dimethylamino-group is introduced into the para-position in methyl phenyl ether and diphenyl ether, where octet expansion is impossible.

These results alone might have suggested that a spectral effect of the conjugative process (II) was under observation in the p-dimethylaminophenyl sulphides: but, because of the somewhat small magnitude of the effect, and our inability always to interpret small differences in the spectra of such complex molecules, more extensive control experiments seemed necessary. A series of such controls is included in the record. Two illustrations of their general effect may first be given. These are that a dimethylamino-group, if introduced into the para-position of dimethylaniline, or into the para-position of the benzyl group of benzyl phenyl sulphide, induces red-shifts of at least half as much as those found in p-dimethylaminophenyl sulphides.

In more detail, the following results show how the long-wave band of dimethylaniline, $\lambda_{\text {max. }} 250 \mathrm{~m} \mu, \log \varepsilon 4 \cdot 15$, is affected by a series of sulphur-containing para-substituents. The figures represent the bathochromic shift $\Delta \lambda$ in $m \mu$, and (in parentheses) the intensity $\log \varepsilon$ of the shifted band :

$\begin{aligned} & \mathrm{S} \cdot \mathrm{CH}_{3} \\ + & 22(4.31) \end{aligned}$	$\begin{gathered} \mathrm{S} \cdot \mathrm{C}_{6} \mathrm{H}_{5} \\ +24(4.39) \end{gathered}$	$\begin{gathered} s \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{NO}_{2}-p \\ +25(4.41) \end{gathered}$	$\begin{gathered} \mathrm{S} \cdot \mathrm{CH}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{NO}_{2}-\mathrm{P} \\ +22(4 \cdot 48) \end{gathered}$
	$\begin{aligned} & \mathrm{CH}_{2} \cdot \mathrm{~S} \cdot \mathrm{CH}_{3} \\ & +12(4 \cdot 27) \end{aligned}$	$\begin{aligned} & \mathrm{CH}_{2} \cdot \mathrm{~S} \cdot \mathrm{C}_{6} \mathrm{H}_{5} \\ & +14(4 \cdot 39) \end{aligned}$	$\begin{gathered} \mathrm{CH}_{2} \cdot \mathrm{~S} \cdot \mathrm{C}_{8} \mathrm{H}_{4} \cdot \mathrm{NO}_{2}-\mathrm{p} \\ +16(4 \cdot 24) \end{gathered}$

We see that the excess of the shift when nitrogen-sulphur conjugation of type (II) is formally permitted, over the shift obtaining when it is excluded, is only of the order of magnitude of the latter shift and is therefore not large enough to allow us to conclude that aryl-sulphur conjugation involving octet expansion produces the spectral consequences which have been observed.

Moreover, the original bands at $255 \mathrm{~m} \mu$ in p-aminodiphenyl sulphide and $274 \mathrm{~m} \mu$ in p-dimethylaminodiphenyl sulphide are only very little enhanced by para-substitution with NX_{2}, OR, and O^{-}(see Table 3).

These results confirm our former provisional conclusion. ${ }^{4}$ Sanesi and Leandri recently found no evidence of conjugation of type II in their dipole-moment measurements on aromatic sulphides. ${ }^{5}$ It would appear therefore that this form of sulphur conjugation is unimportant in aryl sulphides.

[^1]Table 1. Amino- and hydroxy-substituted sulphides.

Diphenyl sulphides			
No.		$\lambda(\mathrm{m} \mu)$	$\log \varepsilon$
	B. p. $176-177^{\circ} / 10 \mathrm{~mm}$.	(232	$3 \cdot 76$)
		251	4.09
		(265	$3 \cdot 70$)
		277	3.76
(6)	M. p. 96°	(224	3.79)
		240	4.07 (e)
		255	$4 \cdot 27$
		275	3.96 (d)
(8) M. p. $50 \cdot 1^{\circ}$		(228	3.92)
		260	4-29
(10) M. p. $66-67^{\circ}$		(228	3.78)
		274	$4 \cdot 39(f)$
	B. p. $180^{\circ} / 5 \mathrm{~mm}$.	(228	4.03)
		254	$4 \cdot 31$ (g)
		285	$3 \cdot 68$ (e)
		311	$3 \cdot 53$

		Benzyl phenyl sulphides*			
$\lambda(\mathrm{m} \mu)$	$\log \varepsilon$	No.		$\lambda(\mathrm{m} \mu)$	$\log \varepsilon$
(225	3.05)	(2)	M. p. $42-43^{\circ}$	(242	3.62)
254	3.99			255	$3 \cdot 83$
280	3.00 (a)				
(220	3.54)	(5)	M. p. $74-75^{\circ}$	(227	3.86)
242	3.90 (b)			248	4.09
(246	3.97)			255	$4 \cdot 25$ (b)
264	$4 \cdot 03$			290	$3 \cdot 45$ (d)
296	$3 \cdot 14$ (c)				
(224	3.64)				ex.
259	$4 \cdot 17$				
295	3.35 (d)				
(230	3.63)				ex.
250	3.93 (e)				
272	$4 \cdot 31$				
305	$3 \cdot 39$ (d)				
238	4.28 (b)				ex.
248	4.25 (d)				
270	3.63 (a)				
(281	2.99)				
308	$3 \cdot 45$				

Thioanisoles
(1) B. p. $82^{\circ} / 16 \mathrm{~mm}$.
(4) B. p. $140^{\circ} / 15 \mathrm{~mm}$.
(7) M. p. $84-85^{\circ}$
(9) B. p. $140^{\circ} / 3 \mathrm{~mm}$.
(11) B. p. $165-163^{\circ} / 16 \mathrm{~mm}$.

出
$p-\mathrm{NH}_{2}$
$p-\mathrm{NH}_{2}$
O^{-}
$p-\mathrm{NMe}_{2}$
$m-\mathrm{NMe}_{2}$

Table 2. p-Substituted dimethylanilines.

No.	$\mathrm{NMe}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{X}(p)$	$\lambda(\mathrm{m} \mu)$	$\log \varepsilon$
) $\mathrm{X}=\mathrm{OH}$	$(222$	3.58)
(15)	(M. p. 77-78 ${ }^{\circ}$)	247	$4 \cdot 04$
		$(284$	$2 \cdot 86)$
		316	$3 \cdot 40$
(18)) $\mathrm{X}=\mathrm{OPh}$	(232	3.81)
	(B. p. $192^{\circ} / 16 \mathrm{~mm}$.)	258	$4 \cdot 25$
		$(289$	3.08)
		311	3.38
(21)	1) $\mathrm{X}=\mathrm{CH}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{NMe}_{2}(p)$	$(227$	3.88)
	(M. p. 91°)	262	$4 \cdot 52$
		(284	3-53)
		301	3.67
124	+ $\mathrm{X}=\mathrm{CH}_{2} \cdot \mathrm{SPh}$	(232	3.82)
	(M. p. $106-107^{\circ}$)	264	
		295	3.65 (a)
(27)	7) $\mathrm{X}=\mathrm{S} \cdot \mathrm{CH}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{NO}_{2}($ p $)$	(232	$3.89)$
	(M. P 102-103 ${ }^{\circ}$	272	$4 \cdot 48$

for the region $>30 n \mathrm{~m} \mu$. see Experientia, $1956,12,49$.
(13) Spectrum in n-heptane: results of Klevens and Platt, J. Amer. Chem. Soc., 1949, 71, 1714. (14), (18), (20), (23), (24.) (26), (27) See Experimental. (15)

$$
\Sigma
$$

No. $\mathrm{NMe}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{X}(p)$	$\lambda(\mathrm{m} \mu)$	$\log \varepsilon$
(14) $\mathrm{X}=\mathrm{OMe}$	(222	3.62)
(M. p. 48°)	250	$4 \cdot 13$
	(285	3.20)
	314	$3 \cdot 41$
(17) $\mathrm{X}=\mathrm{NH}_{2}$	(225	$3 \cdot 60$)
(M. p. 41°)	256	$4 \cdot 08$
	(297	3.10)
	323	$3 \cdot 35$
(20) $\mathrm{X}=\mathrm{CH}_{2} \cdot \mathrm{OPh}$	(234	$3 \cdot 68$)
(M. p. 119-120 $)$	261	$4 \cdot 36$
	(284	$3 \cdot 21)$
	301	3.39
(23) $\mathrm{X}=\mathrm{CH}_{2} \cdot \mathrm{SMe}$	(230	$3 \cdot 59)$
(B. p. $123^{\circ} / 5 \mathrm{~mm}$.)	262	$4 \cdot 27$
	(286	3-25)
	300	3.38
(26) $\mathrm{X}=\mathrm{CH}_{2} \cdot \mathrm{~S} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{NO}_{2}(p)$	(240	3.99)
(M. p. 136-137 ${ }^{\circ}$)	266	$4 \cdot 24$

(13) $\mathrm{X}=\mathrm{H}$

(19) $\mathrm{X} \underset{\left(\mathrm{M} . \mathrm{p} .31^{\circ}\right)}{\mathrm{CH}_{2} \mathrm{Ph}}$

(25) $\mathrm{X} \underset{\left(\mathrm{M} . \mathrm{p} \cdot 180-181^{\circ}\right)}{\mathrm{S} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{NO}_{2}(p)}$
 Fac. chim. ind. (Bologna), 1955, 13, 56; Ann. Chimica, 1954, 45, 1106 : spectrum in EtOH, Mangini and Passerini, $J ., 1952,1168$. TABLE 3. $\mathrm{pp}^{\prime}-D i s u b s t i t u t e d ~ d i p h e n y l ~ s u l p h i d e s . ~$

$280 \quad 3.98(a)$

$\begin{array}{ll}238 & 4 \cdot 26 \\ 258 & 3.93(a) \\ 280 & 3 .\end{array}$
(28) Ber., 1894, $27,3262:$ spectrum in EtOH, Mangini et al., J., 1952, 1168; Gazzetta, 1954, 84, 47. (29) J. Amer. Chem. Soc., 1930, $52,1146:$ spectrum
in EtOH, Mangini et al., Gazzetta, loc. cit. (30) J. Amer. Chem. Soc., 1934, 56, 1978. (31) Spectrum in N-NaOH. (32) Mangini et al., loc. cit.; spectrum
registered in n-hexane; in EtOH, Mangini et al., loc. cit.

Fig. 1.

$A, \mathrm{Ph} \cdot \mathrm{S} \cdot \mathrm{CH}_{3}$ in hexane.
$D, \mathrm{Ph} \cdot \mathrm{S} \cdot \mathrm{Ph}$ in hexane.
G, $p-\bar{O} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{~S} \cdot \mathrm{CH}_{3}$.
$B, p-\mathrm{H}_{2} \mathrm{~N} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{~S} \cdot \mathrm{CH}_{3}$ in hexane.
$\underset{F, p-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N} \cdot \mathrm{C}_{8} \mathrm{H}_{4} \cdot \mathrm{~S} \cdot \mathrm{Ph} \text { in }}{\underset{\sim}{p}-\mathrm{H}_{2} \mathrm{~N} \cdot \mathrm{H}_{4} \cdot}$
$H, p-\overline{\mathrm{O}} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{~S} \cdot \mathrm{Ph}$.
$C, p-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{~S} \cdot \mathrm{CH}_{3}$ in
$\underset{\substack{\text {, } \\ \underset{y}{c}-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}^{2} \cdot \mathrm{C}_{5} \mathrm{H}_{4}}}{\text { hexa }} \cdot \mathrm{S} \cdot \mathrm{Ph}$ in cyclohexane.

Fig. 2.

$A, m-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{~S} \cdot \mathrm{CH}_{3}$ in cyclohexane.
C, $p-\mathrm{H}_{2} \mathrm{~N} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$ in cyclohexane.
$B, m-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{~S} \cdot \mathrm{Ph}$ in cyclohexane.
D, $p-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N} \cdot \mathrm{C}_{6} \mathrm{H}_{6} \cdot \mathrm{CH}_{2} \mathrm{Ph}$ in cyclohexane.
$\underset{F}{E}, p-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$ in cyclohexane.

Fig. 3.

$A, p-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}^{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{~S} \cdot \mathrm{Ph}$ in cycloh exane.
$B, p-\mathrm{NO}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{~S} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}-p$ in hexane.
$C, p-\mathrm{NO}_{2}^{2} \mathrm{C}_{6} \mathrm{H}_{4}^{4} \mathrm{~S} \cdot \mathrm{CH}_{3}{ }^{\circ} \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{~N}^{3}\left(\mathrm{CH}_{3}\right)_{2}-p$ in cyclohe xane.
$D, p-\mathrm{NO}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{CH}_{2} \cdot \mathrm{~S}^{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4}^{4} \cdot \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}-p$ in cyclohe xane.

Experimental

Spectra were determined with a Hilger Uvispek photoelectric spectrophotometer. The concentrations used were $10^{-5} \mathrm{M}$. The compounds were measured in cyclohexane (or in n-hexane, as indicated in the Tables) in order to reduce the solvent effect. The results are reported in Tables 1-3, where the wavelengths of maxima and minima are given as $m \mu$, and extinction values as $\log \varepsilon$: minima are indicated in parentheses.

References are given in the Tables to the methods used in the preparation of the compounds, and also references to spectra already recorded by other authors and in other solvents. The absorption curves are reproduced in Figs. 1-3.

The following descriptions relate to the preparation of new compounds or of known compounds by modified methods.
m -Dimethylaminodiphenyl sulphide was prepared as follows. m-Aminodiphenyl sulphide ${ }^{6}$ (10 g .) was suspended in water ($100 \mathrm{c.c}$.), and sodium hydrogen carbonate (13 g .) and then
 evolution of carbon dioxide had ceased, and then at $50-60^{\circ}$ for $30-60 \mathrm{~min}$. On cooling, an oil separated (together with a small amount of a crystalline product which was neglected) and was extracted with ether. Distillation of the dried ether extract afforded an oil, b. p. 180$181^{\circ} / 5 \mathrm{~mm}$. (Found: N, 6.1. $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NS}$ requires $\mathrm{N}, 6.1 \%$).
m-Dimethylamino(thioanisole) was obtained in better yield and more easily by methylation of m-amino(thioanisole) as above than by distillation of the quaternary iodide. The product had b. p. $165-166^{\circ} / 16 \mathrm{~mm}$. p-Methoxydimethylaniline, obtained by methylation of p-anisidine as indicated above, crystallised from water in plates, m. p. 48° (in agreement with Griess, ${ }^{8}$ who obtained it by distillation of the quaternary iodide). NN-Dimethyl-p-phenoxyaniline was prepared similarly from p-aminodiphenyl ether, as an oil, b. p. $193^{\circ} / 16 \mathrm{~mm}$. (Found : $\mathrm{N}, 6.7 . \mathrm{C}_{14} \mathrm{H}_{15} \mathrm{ON}$ requires $\mathrm{N}, 6.6 \%$).
p-Dimethylaminobenzyl phenyl ether. A solution of p-dimethylaminobenzyl alcohol (5 g .) in concentrated hydrochloric acid (25 c.c.) was heated for 2 hr . in a sealed tube ${ }^{9}$ at 100°, and to the cooled reaction mixture, which contained p-dimethylaminobenzyl chloride, was added aqueous-ethanolic sodium phenoxide $(2.5 \mathrm{~g}$. of phenol in 50 c.c. of ethyl alcohol and $60 \mathrm{c} . \mathrm{c}$. of aqueous $20 \% \mathrm{NaOH}$). The mixture was refluxed for 15 min .; after cooling, a white product was separated. Crystallization from ligroin gave the ether as needles, m. p. 119-120 (Found : $\mathrm{N}, 6 \cdot 2 . \quad \mathrm{C}_{15} \mathrm{H}_{17} \mathrm{ON}$ requires $\mathrm{N}, 6 \cdot 2 \%$).
p-Dimethylaminobenzyl methyl sulphide was prepared as was the preceding ether, except that the p-dimethylaminobenzyl chloride was condensed with sodium thiomethoxide in a sealed tube. Extraction of the solution with ether yielded an oil, which on distillation had b. p. $123^{\circ} / 5 \mathrm{~mm}$. (Found: N, 7.9. $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NS}$ requires $\mathrm{N}, 7.7 \%$). p -Dimethylaminobenzyl phenyl sulphide was prepared similarly from p-dimethylaminobenzyl chloride and sodium thiophenoxide. It separated in plates, m. p. $106-107^{\circ}$, from ethanol (Found: $\mathrm{N}, 5.9 . \mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NS}$ requires N , 5.75%). p-Dimethylaminobenzyl p-nitrophenyl sulphide, prepared from p-dimethylaminobenzyl chloride and sodium p-nitrothiophenoxide, crystallized from isopropyl alcohol in orangeyellow plates, m. p. 136-137 (Found : N, 9.7. $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~N}_{2} \mathrm{~S}$ requires $\mathrm{N}, 9.7 \%$). p-Dimethylaminophenyl p-nitrobenzyl sulphide was prepared from a solution of dimethylaminothiophenol (10 g .) in aqueous sodium hydroxide (3 g . in $30 \mathrm{c.c}$.) and an ethanolic solution ($150 \mathrm{c} . \mathrm{c}$.) of p-nitrobenzyl bromide (15 g .). After the mixture had been refluxed for 15 min . a red crystalline product separated on cooling, and crystallized from ligroin in prisms, m. p. $102-103^{\circ}$ (Found : $\mathrm{N}, \mathbf{9 . 7 2} . \mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~N}_{2} \mathrm{~S}$ requires $\mathrm{N}, \mathbf{9 . 7 9 \%}$).

This work has benefited from a financial contribution from the Italian " Consiglio Nazionale Ricerche." The authors are indebted to Prof. C. K. Ingold, F.R.S., for helpful discussion.

[^2]
[^0]: ${ }^{1}$ Baker, Barrett, and Tweed, J., 1952, 2831.
 ${ }^{2}$ Chierici, Lumbroso, and Passerini, Bull. Soc. chim., 1955, 686.
 ${ }^{3}$ Mangini and Passerini, J., 1952, 1168; Leandri et al., Gazzetta, 1954, 84, 3, 73; Mangini et al. ibid., p. 47.

[^1]: ${ }^{4}$ Mangini and Passerini, loc. cit., ref. 3; J. Phys. Radium, 1954, 15, 625 ; Gazzetta, 1954, 84, 606; Experientia, 1956, 12, 49.
 ${ }_{5}$ Sanesi and Leandri, Boll. Sci. Fac. chim. ind. (Bologna), 1955, 13, 56; Ann. Chim. appl., 1955, 45, 1106.

[^2]: Istituto Chimica Industriale, Universita degli Studi, Bologna, Italy.
 [Present address (R. P.): Istituto Chimica Organica Industriale, Universita Studi, Catania, Corso Italia 21, Italy.] [Received, May 9th, 1956.]

 - Hünig, Chem. Ber., 1952, 85, 1056.
 ${ }^{7}$ Zincke and Muller, ibid., 1913, 46, 781.
 ${ }^{8}$ Griess, ibid., 1880, 13, 249.
 ${ }^{\text {® }}$ As described by Barun and Kruber, Ber., 1912, 45, 2992.

